Abstract
Port state control (PSC) inspection is the most important mechanism to ensure world marine safe. Recently, some SVM-based risk assessment systems have been presented in the world. They estimate the risk of each candidate ship based on its generic factors and history inspection factors to select high-risk one before conducting on-board PSC inspection. However, how to improve the performance of the PSC inspection under the situation of noisy data when applying SVM is still a challenging problem. In this paper, we propose a new approach for PSC inspection, which uses a novel support vector machine and k-nearest neighbor (KNN-SVM) to remove noisy training examples and Bag of Words (BW) to extract some new target factors for the PSC inspection database. The experimental results show that the generalization performance and the accuracy of risk assessment are improved significantly compared to that of the traditional SVM classifier, and adapt to engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.