Abstract

Recently, the rising demand of the industry for natural phenolic antioxidant compounds has turned to the study of microalgae as potential sources. Yet, more economic substrates for microalgal cultivation are sought to lower production costs. To this end, the present work deals with the utilization of rice hull hydrolysate (RHH) as substrate for microalgae Botryococcus braunii through a novel two-stage cultivation system. Initially, RHH was optimized to maximize the contained nutrients while minimizing its inhibitors content. The optimum point was reached under 121 °C, 60 min, 2% (v/v) H2SO4, 30% (w/v) loading. Next, B. braunii was successfully grown first heterotrophically in RHH (25%, v/v), obtaining high biomass production (6.67 g L-1) and then autotrophically to enhance phenolics accumulation. At the end, a high phenolic content of 7.44 ± 0.60 mg Gallic Acid Equivalents g−1 DW was achieved from the produced biomass, thus highlighting the potential of this novel biotechnological method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call