Abstract

Conventional tools for deformation measurement are widely used for structural health monitoring—i.e. strain gauges and fiber optic sensors—due to their relative low cost and efficiency. However, these techniques still present some drawbacks particularly in limited access locations, since their usage requires some sort of cabling or battery-driven electronics. Thus, in a few situations there may be room for new technologies for deformation monitoring of structures. One of the options are passive radio frequency identification (RFID)-based sensors. In synthesis, like conventional methods, these sensors are attached to the surface a test-piece, but are then remotely interrogated and powered by a transmitter. The solidarity of the sensor to the underlying material means that the detected signal is modified in a way that can be correlated to sample strain in a given direction. This paper encompasses the project of a wireless deformation sensor based on an inverted-F antenna focusing on its miniaturization and performance optimization. For this purpose, such an antenna was designed with the help of finite element modelling tools for operation on a 2.0 mm-thick aluminium sheet, and then experimentally validated through static loading tests. Finally, even though sensors of this kind are still in early developments, results show that RFID sensors represents a promising method for remote deformation assessment in components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call