Abstract
In this paper, based on two-dimensional difference- histogram modification, a novel reversible data hiding (RDH) scheme is proposed by using difference-pair-mapping (DPM). First, by considering each pixel-pair and its context, a sequence consisting of pairs of difference values is computed. Then, a two-dimensional difference-histogram is generated by counting the frequency of the resulting difference-pairs. Finally, reversible data embedding is implemented according to a specifically designed DPM. Here, the DPM is an injective mapping defined on difference-pairs. It is a natural extension of expansion embedding and shifting techniques used in current histogram-based RDH methods. By the proposed approach, compared with the conventional one-dimensional difference-histogram and one-dimensional prediction-error-histogram-based RDH methods, the image redundancy can be better exploited and an improved embedding performance is achieved. Moreover, a pixel-pair-selection strategy is also adopted to priorly use the pixel-pairs located in smooth image regions to embed data. This can further enhance the embedding performance. Experimental results demonstrate that the proposed scheme outperforms some state-of-the-art RDH works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Forensics and Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.