Abstract

In the present study, we have demonstrated the process development of human interferon gamma (hIFN-γ) (upstream to downstream). The codon optimized hIFN-γ gene was cloned in Pichia pastoris X-33 and the expression was evaluated in batch reactor study. The purification was carried out with modified nickel chelated reverse micellar system and compared with the existing Nickle- Nitrilotriacetic acid (NI-NTA) method. The parameter optimization for forward extraction demonstrated a significant enhancement of 72% in forward extraction efficiency (FEE). Furthermore, the factors governing back extraction efficiency (BEE) were also optimized with sequential optimization involving Taguchi orthogonal array and Artificial Neural Network linked Simulated Annealing Algorithm (ANN-SA). The optimization resulted in 91.2% back extraction efficiency of recombinant human interferon gamma (rhIFN-γ). The development of this purification system with optimized parameters led to an efficient recovery of 67.3% and improved purity of 79.54%. Alongside, the anti-proliferative activity in MCF-7 cell lines were also investigated and it demonstrated that at 60ngmL−1 concentration of rhIFN-γ more that 25%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call