Abstract

In this article, a mode-stirred reverberation chamber (RC) was designed and proposed for the first time as a cell culture incubator for in vitro electromagnetic waves exposure of adherent cells in tissue culture plates (TCPs). Typical cell incubators require specific conditions, such as temperature of 37 °C and humidity rate of 95%, which are challenging conditions for an RC. The chamber was characterized as an RC through an innovative experimental methodology based on the measurements of the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> parameter of the emitting antenna. The proposed RC is adapted for in vitro bioelectromagnetic experiments for simultaneous exposure of up to 10 TCPs under highly homogeneous exposure conditions at 3.5 GHz, i.e., the mid-frequency band of the 5G telecommunication networks. Experimental results showed that the specific absorption rate (SAR) in the exposed samples extracted from temperature measurements was similar (an acceptable maximum variation lower than 30% was observed) in reason of the homogeneity and the uniformity of the field within the chamber. Specifically, measured SAR values were around 1.5 and 1 W/kg per 1 W incident, in 6-well or 96-well plates used for biological exposure, respectively. To validate our system, numerical simulations were performed. Overall, we showed that experimental and numerical SARs are in good agreement with differences <30% considering the standard deviation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.