Abstract

The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2) and is a frequent event in sporadic thyroid carcinomas. However, the molecular mechanisms underlying RET's potent transforming and mitogenic signals are still not clear. Here, we show that nuclear localization of beta-catenin is frequent in both thyroid tumors and their metastases from MEN 2 patients, suggesting a novel mechanism of RET-mediated function through the beta-catenin signaling pathway. We show that RET binds to, and tyrosine phosphorylates, beta-catenin and show that the interaction between RET and beta-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RET-mediated tyrosine phosphorylation, beta-catenin escapes cytosolic down-regulation by the adenomatous polyposis coli/Axin/glycogen synthase kinase-3 complex and accumulates in the nucleus, where it can stimulate beta-catenin-specific transcriptional programs in a RET-dependent fashion. We show that down-regulation of beta-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumor growth in nude mice. Together, our data show that a beta-catenin-RET kinase pathway is a critical contributor to the development and metastasis of human thyroid carcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.