Abstract

This paper proposes a novel respiratory detection method based on diaphragm motion measurements using a 2D ultrasound unit. The proposed method extracts a respiratory signal from an automated analysis of the internal diaphragm motion during breathing. The respiratory signal may be used for gating. Ultrasound studies of diaphragm breathing motion were performed on four volunteers. The ultrasound video stream was captured and transferred to a personal computer and decomposed into individual image frames. After straightforward image analysis, region of interest selection, and filtering, the mutual information (MI) and correlation coefficients (CCs) between a selected reference frame and all other frames were computed. The resulting MI and CC values were discovered to produce a signal corresponding to the respiratory cycle in both phase and magnitude. We also studied the diaphragm motion of two volunteers during repeated deep inspiration breath holds (DIBH) and found a slight relaxation motion of the diaphragm during the DIBH, suggesting that the residual motion may be important for treatments delivered at this breathing phase. Applying the proposed respiratory detection method to these ultrasound studies, we found that the MI and CC values demonstrate the relaxation behavior, indicatingthat our method may be used to determine the radiation triggering time for a DIBH technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.