Abstract

In the complex practical engineering systems, many interferences and attacking signals are inevitable in industrial applications. This article investigates the reinforcement learning (RL)-based resilient control algorithm for a class of Markovion jump systems with completely unknown transition probability information. Based on the Takagi-Sugeno logical structure, the resilient control problem of the nonlinear Markovion systems is converted into solving a set of local dynamic games, where the control policy and attacking signal are considered as two rival players. Combining the potential learning and forecasting abilities, the new integral RL (IRL) algorithm is designed via system data to compute the zero-sum games without using the information of stationary transition probability. Besides, the matrices of system dynamics can also be partially unknown, and the new architecture requires less transmission and computation during the learning process. The stochastic stability of the system dynamics under the developed overall resilient control is guaranteed based on the Lyapunov theory. Finally, the designed IRL-based resilient control is applied to a typical multimode robot arm system, and implementing results demonstrate the practicality and effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call