Abstract

In real industrial environments, vibration signals generated during the operation of rotating machinery are typically accompanied by significant noise. Existing deep learning methods often yield unsatisfactory diagnostic results when dealing with noisy signals. To address this problem, a novel residual global context shrinkage network (RGNet) is proposed in this paper. Firstly, to fully utilize the useful information in the raw vibration signal, a multi-sensor fusion strategy based on dispersion entropy is designed as the input of the deep network. Then, the RGNet is designed, which improves the long-distance modeling capability of the deep network while suppressing noise, optimizes the network gradient and computational performance. Finally, the noise suppression ability and feature extraction ability of the RGNet are intuitively revealed through an interpretability study. The advantages of the proposed method are proved through a series of comparison experiments under noisy backgrounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.