Abstract

In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subunit C-terminus at the active zone, the role of these interaction partners is controversial. To define the intrinsic motifs that regulate coupling, we expressed mutant CaV2.1 α1 subunits on a CaV2.1 null background at the calyx of Held presynaptic terminal. Our results identified a region that directly controlled fast synaptic vesicle release and vesicle docking at the active zone independent of CaV2.1 abundance. In addition, proposed individual direct interactions with active zone proteins are insufficient for CaV2.1 abundance and coupling. Therefore, our work advances our molecular understanding of CaV2.1 regulation of neurotransmitter release in mammalian CNS synapses.

Highlights

  • A critical determinant in regulating synaptic vesicle (SV) release probability and kinetics is coupling, the physical distance of SVs and voltage-gated calcium channels (VGCCs) at the presynaptic terminal (Neher and Sakaba, 2008)

  • Helper-Dependent Adenoviral vectors (HdAd) can package large amounts of foreign DNA, which is critical as the CaV2.1 a1 subunit cDNA is larger than commonly used viral vectors (Lentz et al, 2012)

  • Active zone protein binding sites in the CaV2.1 a1 subunit C-terminus are dispensable for CaV2.1 abundance in the presynaptic terminal

Read more

Summary

Introduction

A critical determinant in regulating synaptic vesicle (SV) release probability and kinetics is coupling, the physical distance of SVs and voltage-gated calcium channels (VGCCs) at the presynaptic terminal (Neher and Sakaba, 2008). Differences in coupling distances between CaV2 VGCCs subtypes underpin the differences in CaV2 VGCC subtype effectiveness in eliciting AP evoked release and define the SV release mode in response to APs (Eggermann et al, 2011). They are: nanodomain, a few tightly coupled VGCCs (

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call