Abstract

We propose and demonstrate a novel refractometric sensor based on optofluidic technology in photonic crystal fibers with a composite core. The composite core consisting of a ring-like fluid channel around the refractive index matching core is architected within photonic crystal fibers. A different refractive index of water-like analyte is filled into the same channel in turn to form steady microflows around the matching core, and the refractive index of analyte can be detected by observing the resonant coupling between the composite and solid-core modes. The sensitivity of water-like analyte around 1.33 is about −1.11 × 103 nm per refractive index unit. Simulations indicate that analyte refractive index sensing possesses a dynamic range of 1 to 1.4. We also analyze the matching core with different refractive indices and optimize the structure. Since this kind of refractomeric sensor can be reused with high sensitivity by controlling the refractive index of matching core at different temperatures, it is a good candidate for bio-sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.