Abstract

Milk adulteration poses a significant risk to public health and consumer trust, compromising its nutritional value. To address this, we've developed an optical fiber-based sensor using a Lossy Mode Resonance (LMR) approach. Antimony Oxide (Sb2O3) serves as the sensing layer, deposited onto the optical fiber's unclad core using Radio Frequency Magnetron sputtering. The sensing layer underwent comprehensive characterization, including X-Ray diffraction (XRD), UV–Vis spectroscopy, Ellipsometer, Atomic Force Microscopy (AFM), EDAX, and Field Emission Scanning Microscopy (FESEM). The sensor was tested for formaldehyde and water adulteration across normal milk type 1, full-fat milk type 2, vendor milk type 3, and, with concentrations ranging from 0 % to 10 %. Observations included resonance wavelength shifts and sensing parameters such as sensor response, sensitivity, and repeatability. For Sb2O3-coated sensor probes, responses to formaldehyde and water adulteration for type 1 milk is 2.05 % and 2.22 %, type 2 milk is 2.17 % and 2.4 %, and type 3 milk is 1.90 % and 1.95 %. Sensitivity for Sb2O3-coated probe to formaldehyde are 2.2 nm/v% (type 1 milk),1.9 nm/v% (type 2 milk) and 1.5 nm/v% (type 3 milk). For water in milk, the sensitivities are 1.7 nm/v%, 1.5 nm/v%, and 1.2 nm/v%. Furthermore, a prototype sensor probe has been developed for continuous milk adulteration monitoring, interfaced with Arduino and Thing Speak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.