Abstract
Hyperspectral imaging technology has been broadly applied in remote sensing because it collects echoed signals from across the electromagnetic (EM) spectrum and provides fruitfully helpful information. However, the processing or transformation of high-data-volume hyperspectral images, also viewed as snapshots varying with the EM spectrum, burdens the hardware resources, especially for the high spectral resolution and spatial resolution cases. To tackle this challenge, a novel reduced-order method based on the dynamic mode decomposition (DMD) algorithm is presented here to analyze hyperspectral images. The method decomposes the spatial-spectral hyperspectral images in terms of spatial dynamic modes and corresponding spectral patterns. Then, these spatial-spectral patterns are utilized to recover the raw hyperspectral images. Our proposed approach is benchmarked by the actual hyperspectral images measured at the Salinas scene. It is demonstrated that the proposed approach can represent the hyperspectral images with a low-rank model in spectral dimension. Our proposed approach could provide a useful tool for the model order reduction of hyperspectral images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.