Abstract

We consider a network-preserved model of power networks with proper algebraic constraints resulting from constant power loads. Both for the linear and the nonlinear differential algebraic model of the network, we derive explicit reduced models which are fully expressed in terms of ordinary differential equations. For deriving these reduced models, we introduce the “projected incidence” matrix which yields a novel decomposition of the reduced Laplacian matrix. With the help of this new matrix, we provide a complementary approach to Kron reduction, which is able to cope with constant power loads and nonlinear power flow equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.