Abstract

Gambogic acid (GA) is a naturally derived potent anticancer agent with extremely poor biocompatibility. In the present study, a novel of redox/pH dual-responsive multifunctional magnetic complex micelle (sPEG/HA/CSO-SS-Hex/Fe3O4/GA), which consisted of a reducible hexadecanol-modified chitosan oligosaccharide polymer micelle (CSO-SS-Hex) coated with hyaluronic acid (HA) and DCA grafted sheddable PEG-PLL (sPEG) copolymers and loaded with gambogic acid (GA) and Fe3O4 nanoparticles were developed for parenteral delivery for the treatment of triple negative breast cancer (TNBC). The ex vivo study showed that the sPEG shielded cationic HA/CSO-SS-Hex/Fe3O4/GA core at physiological pH but quickly shed off to re-expose the core due to its charge reversible property. The sPEG/HA/CSO-SS-Hex/Fe3O4/GA micelles effectively facilitated tumor-targeted GA delivery by HA, which is a targeting ligand for CD44 receptor of TNBC cells, meanwhile increase GA uptake at the acidic condition but diminished the drug uptake at neutral pH. The in vitro cellular uptake study and in vivo biodistribution and antitumor activity of the formulations were determined, all results showed that the complex micelle enhanced TNBC tumor cellular uptake and fast drug release due to the combined effect of magnet targeting, CD44 receptor-mediated internalization and redox/pH dual-responsive drug release. Hence, tumor-targeted delivery of GA with redox/pH dual-responsive multifunctional magnetic complex micelle sPEG/HA/CSO-SS-Hex/Fe3O4/GA might have potential implications for the chemotherapy of TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.