Abstract

As the semiconductor and photovoltaic industry undergo rapid growth, a large amount of silicon sludge is generated from the cutting process of silicon ingots. However, it is not effectively recycled. Recovery of nanometer-sized silicon (Si) particles from the sludge has become an important concern because the silicon sludge contains valuable resources including high purity silicon. In the present study, we investigated the novel recovery of Si nanoparticles from waste silicon sludge. The waste silicon sludge also contained surfactant, silicon carbide particles and metallic fragments. After removal of the surfactant by distillation, the Si nanoparticles were recovered by applying controlled ultrasonic waves and centrifugation in series. Metallic impurities in the recovered Si nanoparticles were purified by HCl treatment. The overall maximum yield and purity of the Si nanoparticles were about 80% and 99.7%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call