Abstract

Atopic dermatitis (AD), a prevalent chronic inflammatory skin disorder, is marked by impaired skin barrier function and persistent pruritus. It significantly deteriorates patients’ quality of life, making it one of the most burdensome non-lethal skin disorders. Filaggrin plays a crucial role in the pathophysiology of barrier disruption in AD, interacting with inflammatory mediators. It is an integral part of the extracellular matrix architecture, serving to protect the skin barrier and attenuate the inflammatory cascade. In this study, we engineered a novel recombinant human filaggrin (rhFLA-10) expression vector, which was subsequently synthesized and purified. In vitro and ex vivo efficacy experiments were conducted for AD. rhFLA-10, at low concentrations (5 to 20 μg/mL), was non-toxic to HACaT cells, significantly inhibited the degranulation of P815 mast cells, and was readily absorbed by cells, thereby exerting a soothing therapeutic effect. Furthermore, rhFLA-10 demonstrated anti-inflammatory properties (p < 0.05). In vivo, efficacy experiments further substantiated that rhFLA-10 could effectively ameliorate AD in mice and facilitate the repair of damaged skin (p < 0.001). These findings underscore the considerable potential of rhFLA-10 in the treatment of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call