Abstract

Aflatoxin B1 (AFB1) is a typical mycotoxin that signifacntly endangers public health and economy. In this study, we systematically studied the interaction of aptamers with AFB1 using circular dichroism, molecular dynamics, molecular docking, and fluorescence analysis. The truncated sequence aptamers were screened using molecular docking. We successfully obtained the AFB1 aptamer with higher affinity and its truncated form was enhanced by 5.2-fold compared to the initial AFB1 aptamer. In addition, for rapid detection of AFB1, we designed a fluorescent nano-adaptor sensing platform using RecJf exonuclease signal amplification strategy based on the optimal aptamer. The aptasensor showed satisfactory sensitivity towards AFB1 with a linear detection range of 1–400 ng/mL and a detection limit of 0.57 ng/mL. The aptasensor was successfully applied to the determination of AFB1 in soybean oil and corn oil with recoveries of 91.02 %–106.59 % and 87.39 %–110.61 %, respectively. The successful application of the AFB1 aptasensor, developed through bioinformatics truncation of the aptamer, provides a novel approach to creating a cost-effective, eco-friendly, and rapid aptamer sensing platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call