Abstract
Gain-of-function mutations in fibroblast growth factor-23 (FGF23) are responsible for autosomal dominant hypophosphatemic rickets, a disorder of isolated renal phosphate wasting. Patients with the disorder display hypophosphatemia with normocalcemia as well as inappropriately normal 1,25-dihydroxyvitamin D [1,25(OH)2D3] concentrations. Reciprocally tumoral calcinosis (TC) patients are often hyperphosphatemic with inappropriately normal or elevated serum 1,25(OH)2D3 levels and have ectopic and vascular calcifications, a phenotype similar to that of Fgf23 null mice. Therefore, the goal of the present studies was to test whether FGF23 was a candidate gene for TC. Two sisters in a consanguineous TC family had hyperphosphatemia and normal 1,25(OH)2D3 levels with characteristic ectopic and vascular calcifications. Interestingly, these patients had low-normal intact serum FGF23 levels but demonstrated FGF23 concentrations approximately 40 times normal when assessed with a C-terminal FGF23 serum assay. Mutational analyses identified a homozygous S71G mutation in FGF23 in the TC patients, which was not found in control alleles. Finally, modeling demonstrated that the S71G mutation most likely destabilizes full-length FGF23. In summary, recessive FGF23 mutations can lead to TC. Additionally, our findings indicate that FGF23 may adopt an unstable conformation in some TC patients, possibly leading to nonfunctional FGF23 protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Clinical Endocrinology & Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.