Abstract
The emergence of drug-resistant viruses is a major issue in the treatment of HIV-1 infections. Quite often these drug-resistant viruses have a reduced replication capacity. A novel assay was developed to study the impact of mutations selected during therapy on viral replication capacity. Two HIV-1 HXB2 reference clones were constructed for this assay based on viral competition experiments, which are identical except for the presence of two silent nucleotide changes in p24 in one of the two clones. Within these two reference clones, three different contiguous deletions were constructed: (I) the C-terminus of Gag and protease, (II) the N-terminus of RT and (III) the C-terminus of Gag and protease together with the N-terminus of RT. Using these reference clones, recombinant viruses were created and viral competition experiments were performed. The proportion of each virus during the competition experiments was determined with a real-time PCR assay based on the two silent nucleotide changes in p24 in one of the two reference clones. With this novel assay it was possible to detect accurately differences in replication capacity due to mutations in the C-terminus of Gag and protease and/or the N-terminus of RT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.