Abstract

To improve the performance and efficiency of the energy management strategy used in electric vehicles equipped with a dual-motor coupled powertrain platform, this study proposes a systematic real-time search approach via vehicle-to-cloud (V2C) connectivity to reduce the battery degradation and electrical consumption by control working mode and split torque. To be specific, the Monte Carlo Tree Search (MCTS) is employed to search for optimal control sequence in the velocity feasible range in the cloud platform, considering battery loss and electric cost. The logic of time and velocity range updating is proposed as the solution for abrupt traffic changes. To evaluate the effectiveness of the proposed method, a rule-based and an online DP (Dynamic Programming) -based strategy is developed as the baseline approach. Meanwhile, the assessment conditions include standard cycles following power noise and real-world driving cycles. Finally, actual vehicle and hardware-in-the-loop (HIL) experimental results demonstrate that the proposed method significantly outperforms other strategies, the average total cost is 0.36 USD/km, and the improvements are 12.9% and 11.4% compared to the rule-based and online DP-based approaches, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.