Abstract

In this paper, a novel deep learning method Mamba-RAYOLO is presented, which can improve detection and classification in the processing and analysis of ECG images in real time by integrating three advanced modules. The feature extraction module in our work with a multi-branch structure during training can capture a wide range of features to ensure efficient inference and rich feature extraction. The attention mechanism module utilized in our proposed network can dynamically focus on the most relevant spatial and channel-wise features to improve detection accuracy and computational efficiency. Then, the extracted features can be refined for efficient spatial feature processing and robust feature fusion. Several sets of experiments have been carried out to test the validity of the proposed Mamba-RAYOLO and these indicate that our method has made significant improvements in the detection and classification of ECG images. The research offers a promising framework for more accurate and efficient medical ECG diagnostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.