Abstract

Autosomal dominant inherited Protein S deficiency (PSD) (MIM 612336) is a rare disorder caused by rare mutations, mainly located in the coding sequence of the structural PROS1 gene, and associated with an increased risk of venous thromboembolism. To identify the molecular defect underlying PSD observed in an extended French pedigree with seven PSD affected members in whom no candidate deleterious PROS1 mutation was detected by Sanger sequencing of PROS1 exons and their flanking intronic regions or via an multiplex ligation-dependent probe amplification (MLPA) approach, a whole genome sequencing strategy was adopted. This led to the identification of a never reported C to T substitution at c.-39 from the natural ATG codon of the PROS1 gene that completely segregates with PSD in the whole family. This substitution ACG→ATG creates a new start codon upstream of the main ATG. We experimentally demonstrated in HeLa cells that the variant generates a novel overlapping upstream open reading frame (uORF) and inhibits the translation of the wild-type PS. This work describes the first example of 5'UTR PROS1 mutation causing PSD through the creation of an uORF, a mutation that is not predicted to be deleterious by standard annotation softwares, and emphasizes the need for better exploration of such type of non-coding variations in clinical genomics.

Highlights

  • Protein S (PS), with Protein C (PC) and antithrombin (AT), one of the three main natural inhibitors of the coagulation cascade plays a key role in the control of blood clot formation

  • This led to the definition of three clinical subtypes of PS deficiencies: (i) Type I refers to deficiency of both free and total PS and decreased PS activity, (ii) Type II is defined by normal plasma levels but decreased PS activity, while (iii) Type III shows decreased free PS plasma levels and decreased PS activity but normal total PS (TPS) plasma levels

  • Because of the broad role of upstream open reading frame (uORF) on downstream translation [28,29], we hypothesized that the detected variant could be at the origin of the observed Protein S deficiency (PSD)

Read more

Summary

Introduction

Protein S (PS), with Protein C (PC) and antithrombin (AT), one of the three main natural inhibitors of the coagulation cascade plays a key role in the control of blood clot formation. PS circulates both under a free and active form (∼40%) and an inactive form (∼60%) when complexed with C4b-binding protein. PS plasma concentration can be characterized by antigen measurements of the free and total PS levels or by PS activity. This led to the definition of three clinical subtypes of PS deficiencies: (i) Type I refers to deficiency of both free and total PS and decreased PS activity, (ii) Type II is defined by normal plasma levels but decreased PS activity, while (iii) Type III shows decreased free PS plasma levels and decreased PS activity but normal total PS (TPS) plasma levels.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call