Abstract

ObjectiveSarcopenia is an important prognostic consideration in surgical oncology that has received relatively little attention in brain tumor patients. Temporal muscle thickness (TMT) has recently been proposed as a novel radiographic marker of sarcopenia that can be efficiently obtained within existing workflows. We investigated the prognostic value of TMT in primary and progressive glioblastoma. MethodsTMT measurements were performed on magnetic resonance images of 384 patients undergoing 541 surgeries for glioblastoma. Relationships between TMT and clinical characteristics were examined on bivariate analysis. Optimal TMT cutpoints were established using maximally selected rank statistics. Predictive value of TMT upon postoperative survival (PS) was assessed using Cox proportional hazards regression adjusted for age, sex, Karnofsky performance status (KPS), Stupp protocol completion, extent of resection, and tumor molecular markers. ResultsAverage TMT for the primary and progressive glioblastoma cohorts was 9.55 mm and 9.40 mm, respectively. TMT was associated with age (r = −0.14, p = 0.0008), BMI (r = 0.29, p < 0.0001), albumin (r = 0.11, p = 0.0239), and KPS (r = 0.11, p = 0.0101). Optimal TMT cutpoints for the primary and progressive cohorts were ≤ 7.15 mm and ≤ 7.10 mm, respectively. High TMT was associated with increased Stupp protocol completion (p = 0.001). On Cox proportional hazards regression, high TMT predicted increased PS in progressive [HR 0.47 (95% confidence interval (CI)) 0.25–0.90), p = 0.023] but not primary [HR 0.99 (95% CI 0.64–1.51), p = 0.949] glioblastoma. ConclusionsTMT correlates with important prognostic variables in glioblastoma and predicts PS in patients with progressive, but not primary, disease. TMT may represent a pragmatic neurosurgical biomarker in glioblastoma that could inform treatment planning and perioperative optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.