Abstract

AbstractA radial‐flow, spherical‐bed reactor concept for methanol synthesis in the presence of catalyst deactivation, has been proposed. This reactor configuration visualizes the concentration and temperature distribution inside a radial‐flow packed bed with a novel design for improving reactor performance with lower pressure drop. The dynamic simulation of spherical multi‐stage reactors has been studied in the presence of long‐term catalyst deactivation. Model equations were solved by the orthogonal collocation method. The performance of the spherical multi‐stage reactors was compared with a conventional single‐type tubular reactor. The results show that for this case study and with similar reactor specifications and operating conditions, the two‐stage spherical reactor is better than other alternatives such as single‐stage spherical, three‐stage spherical and conventional tubular reactors. By increasing the number of stages of a spherical reactor, one increases the quality of production and decreases the quantity of production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.