Abstract

To produce a filter small enough to fit a 2-in wafer in the very high frequency (VHF) band while avoiding parasitic cross coupling among nonadjacent resonators, a novel quasi-lumped element resonator with interdigital capacitor, double-spiral inductor, and pad capacitor have been introduced. This resonator has not only a highly miniature structure but also a very weak far-field radiation. A ten-pole quasi-elliptic filter with group-delay equalization, which has a 7.1-MHz 1-dB passband and a center frequency of 257.5 MHz, is designed and fabricated on a 37.3 x mm x 30.1 x mm x 0.5 x mm LaAlO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> substrate. The measured results showed a 0.24-dB insertion loss, a 15-dB return loss, and a 70-dB out-of-band rejection. Moreover, the group delay variation is less than 50 ns over 70% of the 1-dB passband and the band where the phase error ripple is within plusmn5 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">deg</sup> is more than 80% of the 1-dB passband. The overall experimental performance showed excellent agreement with the theory and simulation, which is a good proof of the advantage of our weak far-field radiation resonator. The result showed that the novel resonator is very suitable to fabricate narrowband ultrahigh frequency, VHF, or even lower frequency high-temperature superconductor filters on a 2-in wafer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call