Abstract

A novel metal–semiconductor and/or heterodimensional nanohybrid material (CdS–MoS2) is synthesized by hybridizing catalytically important materials (i.e., zero-dimensional CdS quantum dots and two-dimensional, unilamellar MoS2 sheets). According to our high-resolution transmission electron microscopic (HRTEM) analyses on the present nanohybrid, ca. 6.5 nm CdS quantum dots are successfully immobilized in the interlayer space of MoS2 sheets. The microscopic internal structure of the CdS–MoS2 nanohybrid is mainly characterized as a “house of cards” structure. Such a microscopic evolution is further demonstrated by BET specific surface area analyses. The BET surface area (∼84 m2 g−1) of the present nanohybrid sample is nearly two orders of magnitude larger than that of the pristine material (2H-MoS2), suggesting that the CdS quantum dots are rather loosely packed in the interlayer space of MoS2 platelets to create many voids. We suggest, from the observed microscopic evolution and the increased BET surface area, that the present nanohybrid material can be successfully applied as a high performance catalyst in hydrodesulfurization (HDS) and/or visible light harvesting photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.