Abstract

The flying ad hoc network (FANET) is an emerging network focused on unmanned aerial vehicles (UAVs) that has attracted the attention of researchers around the world. Due to the cooperation between UAVs in this network, data transfer between these UAVs is very essential. Routing protocols must determine how to make routing paths for each UAV with others in a wireless ad hoc network to facilitate the data transmission between UAVs. Nowadays, reinforcement learning (RL), especially Q-learning, is an effective response for solving existing challenges in the routing approaches and adding features such as autonomous, self-adaptive, and self-learning to these approaches. In this paper, Q-learning is used to enhance and increase network performance, and a Q-learning-based routing method using an intelligent filtering algorithm called QRF is presented for FANETs. The main innovation in this paper is that QRF manages the size of the state space using the proposed filtering algorithm. This will increase the convergence rate of the Q-learning-based routing algorithm. On the other hand, QRF regulates the learning parameters related to Q-learning so that this scheme is better adapted to the FANET environment. In the last step, the network simulator version 2 (NS2) is employed to execute the simulation process related to QRF. In this process, five evaluation criteria, namely energy consumption, packet delivery rate, overhead, end-to-end delay, and network longevity are evaluated, and the results obtained from QRF are compared with those of QFAN, QTAR, and QGeo. The simulation results in this paper show that QRF makes a balanced energy distribution between UAVs and thus extends the network longevity. Moreover, the intelligent filtering algorithm designed in QRF has reduced delay in the routing process but is associated with communication overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.