Abstract

The aim of this study was the development of an accurate and quantitative pyrosequence (PSQ) method for paternal RHD zygosity detection to help risk management of hemolytic disease of the fetus and newborn (HDFN). Blood samples from 96 individuals were genotyped for RHD zygosity using pyrosequencing assay. To validate the accuracy of pyrosequencing results, all the samples were then detected by the mismatch polymerase chain reaction with sequence-specific primers (PCR-SSP) method and Sanger DNA sequencing. Serological tests were performed to assess RhD phenotypes. Serological results revealed that 36 cases were RhD-positive and 60 cases were RhD-negative. The concordance rate between pyrosequencing assay and mismatch PCR-SSP assay was 94.8% (91/96). There were 5 discordant results between pyrosequencing and the mismatch PCR-SSP assay. Sanger sequencing confirmed that the pyrosequencing assay correctly assigned zygosity for the 5 samples. This DNA pyrosequencing method accurately detect RHD zygosity and will help risk management of pregnancies that are at risk of HDFN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call