Abstract

The traditional single-switch circuit has the advantages of fewer components, no shoot-through problems, and suitability for high-frequency wireless charging applications. However, because of the high voltage stress of the switch, the bulky inductor, and the narrow soft-switching range, its power and applications have some limitations. To relieve this problem, this paper proposes a pull-up active-clamping circuit, which not only offers a low component count with no bulky inductors, but also greatly reduces the switch voltage stress. In addition, a wide range of soft switching can be achieved by designing a primary-side compensation capacitor. A detailed parametric design method is given and compared with existing circuits from the aspects of switch voltage stress, component count, efficiency, cost, and so on. Finally, a 1 MHz, 180 W active-clamping wireless charging system is built to verify the proposed circuit and design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.