Abstract

PurposeThe purpose of this paper is to present a new approach for the optimal design of protective current transformers (CTs). The proposed technique is applied to the design of typical CTs and results are compared with traditional CT design method and genetic algorithm optimization algorithm.Design/methodology/approachThe aim of CT design is to make current measurements more accurately, particularly for the high fault currents which arise in short circuits, and more efficient CT in terms of both size and cost. The present work formulates these objectives as an optimization problem to be solved by particle swarm optimization.FindingsSimulation results demonstrate the effectiveness of this technique in optimizing the CT design parameters. The designed CTs have smaller measurement errors compared to standard values and respond well to high fault currents. Manufacturing costs have also been reduced.Originality/valueIn addition to improved efficiency, the benefits of this method are its treatment of CT design in terms of an equivalent circuit and design parameters. The proposed algorithm also extends the linear operation area of the CT and guarantees its good response to high fault currents that may occur in power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.