Abstract

AbstractA novel 1:2 proton transfer self‐associated compound LH2, (GH+)2(pydc2—), was synthesized from the reaction of dipicolinic acid, pydcH2, (2, 6‐pyridinedicarboxylic acid), and guanidine hydrochloride, (GH+)(Cl—). The characterization was performed using IR, 1H and 13C NMR spectroscopy and single‐crystal X‐ray diffraction. LH2 · H2O crystallizes in the space group C2/c of the monoclinic system and contains eight molecules per unit cell. The unit cell dimensions are: a = 26.480(5)Å, b = 8.055(2)Å, c = 14.068(3)Å. The first coordination complex (GH)2[Cd(pydc)2] · 2H2O, was prepared using LH2 and cadmium(II) iodide, and characterized by 1H and 13C NMR spectroscopy and X‐ray crystallography. The crystal system is triclinic with space group P1¯ with one molecule per unit cell. The unit cell dimensions are: a = 8.5125(7)Å, b = 11.0731(8)Å, c = 13.2404(10)Å. The cadmium(II) atom is six‐coordinated with a distorted octahedral geometry. The two pydc2— units are almost perpendicular to each other. The protonation constants of the building blocks of the pydc‐guanidine adduct, the equilibrium constants for the reaction of pydc2— with guanidine and the stoichiometry and stability of the Cd2+ complex with LH2 in aqueous solution were accomplished by potentiometric pH titration. The solution studies strongly support a self‐association between pydc2— and GH+ with a stoichiometry for the CdII complex similar to that observed for the isolated crystalline complex. In fact, the [Cd(pydc)2]2— complex was found as the most abundant species in solution (> 90 %) at a pH >5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.