Abstract

TiO2-based heterogeneous photocatalysis has been widely considered as a promising technique for decontamination of water. Herein the hybrid of TiO2 nanocrystals decorated Fe2O3 nanoparticles was successfully synthesized via a mild hydrothermal method, derived from favorable titanium glycolate and water-soluble FeII salt precursors. The composition and structure of the as-synthesized TiO2-Fe2O3 hybrids were characterized by Powder X-ray diffraction (XRD), EDX mapping, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The photocatalytic activity was evaluated by the decomposition of Rhodamine B in an aqueous solution under visible-light (λ>420nm). The results show that the TiO2-Fe2O3 nanocomposite exhibits superior photocatalytic capability to the bare ones upon Rhodamine B degradation, owing to promoted photo-induced electrons and holes separation and migration on the basis of photoluminescence spectra, photocurrent measurements, and electrochemical impedance (EIS) spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call