Abstract

Previously, we reported the biocontrol effects of Saccharothrix yanglingensis strain Hhs.015 on Valsa mali. Here, we report a novel protein elicitor BAR11 from the biocontrol strain Hhs.015 and its functions in plant defense responses. Functional analysis showed that the elicitor BAR11 significantly stimulated plant systemic resistance in Arabidopsis thaliana to Pseudomonas syringae pv. tomato DC3000. In addition, systemic tissues accumulated reactive oxygen species and deposited callose in a short period post-treatment compared with the control. Quantitative RT-PCR results revealed that BAR11 can induce plant resistance through the salicylic acid and jasmonic acid signaling pathways. Further analysis indicated that BAR11 interacts with host catalases in plant cells. Taken together, we conclude that the elicitor BAR11 from the strain Hhs.015 can trigger defense responses in plants.

Highlights

  • IntroductionPlants use different regulatory mechanisms such as physical and chemical barriers to protect themselves from pathogens, insect pests, and adverse abiotic stresses (Fu and Dong, 2013)

  • Pathogen infection has caused huge losses in agricultural production

  • We demonstrated that the recombinant protein BAR11 triggered early signaling events of plant defense responses in A. thaliana and induced systemic resistance (ISR) against infections by Pseudomonas syringae pv. tomato (Pst) DC3000

Read more

Summary

Introduction

Plants use different regulatory mechanisms such as physical and chemical barriers to protect themselves from pathogens, insect pests, and adverse abiotic stresses (Fu and Dong, 2013). Biotic or abiotic stress elicits plants’ innate immunity and defense responses. In addition to these non-specific defense mechanisms, there are two other major types of induced resistance: systemic acquired resistance (SAR) induced by pathogenic microorganisms, and induced systemic resistance (ISR) induced by rhizobacteria (Pieterse et al, 2014). Plants have evolved sophisticated mechanisms for defense against necrotrophic and biotrophic pathogens (Zheng et al, 2012). Plants activate SA-mediated defense against biotrophic pathogens and JA-induced defense against herbivorous insects or necrotrophic pathogens with a few exceptions (Spoel and Dong, 2008). The SA defense pathway plays an essential role in plant defense against biotrophic pathogens, whereas the JA defense pathway is involved in plant defense against herbivores and necrotrophic pathogens (Pieterse et al, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call