Abstract

Transforming growth factor beta (TGFbeta) signal transduction is mediated by two receptor Ser/Thr kinases acting in series, type II TGFbeta receptor (TbetaR-II) phosphorylating type I TGFbeta receptor (TbetaR-I). Because the failure of interaction cloning, thus far, to identify bona fide TbetaR-I substrates might reasonably have been due to the use of inactive TbetaR-I as bait, we sought to identify molecules that interact specifically with active TbetaR-I, employing the triple mutation L193A,P194A,T204D in a yeast two-hybrid system. The Leu-Pro substitutions prevent interaction with FK506-binding protein 12 (FKBP12), whose putative function in TGFbeta signaling we have previously disproved; the charge substitution at Thr204 constitutively activates TbetaR-I. Unlike previous screens using wild-type TbetaR-I, where FKBP12 predominated, none of the resulting colonies encoded FKBP12. A novel protein was identified, TbetaR-I-associated protein-1 (TRAP-1), that interacts in yeast specifically with mutationally activated TbetaR-I, but not wild-type TbetaR-I, TbetaR-II, or irrelevant proteins. In mammalian cells, TRAP-1 was co-precipitated only by mutationally activated TbetaR-I and ligand-activated TbetaR-I, but not wild-type TbetaR-I in the absence of TGFbeta. The partial TRAP-1 protein that specifically binds these mutationally and ligand-activated forms of TbetaR-I can inhibit signaling by the native receptor after stimulation with TGFbeta or by the constitutively activated receptor mutation, as measured by a TGFbeta-dependent reporter gene. Thus, TRAP-1 can distinguish activated forms of the receptor from wild-type receptor in the absence of TGFbeta and may potentially have a functional role in TGFbeta signaling.

Highlights

  • EXPERIMENTAL PROCEDURESInteraction Cloning and Two-hybrid Assays in Yeast—Constructions containing the cytoplasmic domains of T␤R-I and T␤R-II or point mutations of T␤R-I in the yeast expression plasmid pAS2–1 were previously described [9]

  • Transforming growth factor ␤ (TGF␤) signal transduction is mediated by two receptor Ser/Thr kinases acting in series, type II TGF␤ receptor (T␤R-II) phosphorylating type I TGF␤ receptor (T␤R-I)

  • For receptor serine/threonine kinases and the TGF␤ superfamily, the signal transduction pathway is similar but distinct; TGF␤ ligands induce the heterodimerization of T␤R-II and T␤R-I, whereupon T␤R-II phosphorylates T␤R-I on serine and threonine residues of its Gly/Ser-rich domain

Read more

Summary

EXPERIMENTAL PROCEDURES

Interaction Cloning and Two-hybrid Assays in Yeast—Constructions containing the cytoplasmic domains of T␤R-I and T␤R-II or point mutations of T␤R-I in the yeast expression plasmid pAS2–1 were previously described [9]. The cytoplasmic domain of T␤R-IL193A,P194A,T204D in pAS2–1 was used as bait, to screen a human lymphocyte cDNA library in the pACT vector (CLONTECH).

The abbreviations used are
RESULTS
DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call