Abstract

Brazil is a major producer of agro-industrial residues, such as sugarcane bagasse, which could be used as raw material for microbial production of cellulases as an important strategy for the development of sustainable processes of second generation ethanol production. For this purpose, this work aimed at screening for glycosyl hydrolase activities of fungal strains isolated from the Brazilian Cerrado. Among 13 isolates, a Trichoderma harzianum strain (L04) was identified as a promising candidate for cellulase production when cultured on in natura sugarcane bagasse. Strain L04 revealed a well-balanced cellulolytic complex, presenting fast kinetic production of endoglucanases, exoglucanases and β-glucosidases, achieving 4,022, U.L-1 (72 h), 1,228 U.L-1 (120 h) and 1,968 U.L-1 (48 h) as the highest activities, respectively. About 60% glucose yields were obtained from sugarcane bagasse after 18 hours hydrolysis. This new strain represents a potential candidate for on-site enzyme production using sugarcane bagasse as carbon source.

Highlights

  • Lignocellulosic residues derived from different agroindustrial activities represent a massive source of raw material for the production of fuels, chemical feedstock, foods and livestock feeds (Kumar et al 2008)

  • All thirteen isolates demonstrated the ability to growth on cellulose as sole carbon source, but only four (L04, L08, L10, L11) showed a significant CMC hydrolysis halo when submitted to a rapid screening for cellulolytic activity on Congo red plate assay

  • No significant growth and/or activity hydrolysis halo on cellulosic substrate were observed in the other strain plates, L04, L08, L10 and L11 isolates were selected for further studies

Read more

Summary

Introduction

Lignocellulosic residues derived from different agroindustrial activities represent a massive source of raw material for the production of fuels, chemical feedstock, foods and livestock feeds (Kumar et al 2008). Brazil is a major producer of renewable feedstock including sugarcane which is essentially used for sugar and fuel ethanol production. In 2010, sugarcane production reached ~717.5 million tons (FAOSTAT 2012). A significant fraction of this biomass goes to industries for steam and electricity generation. The remaining fraction represents the ideal feedstock for the generation of high-value commodities as second-generation ethanol (Canilha et al 2012). The use of lignocellulosic biomass for the production of second generation ethanol requires a pretreatment for the liberation of carbohydrate polymers. A number of different strategies have been envisioned to convert the polysaccharides into fermentable sugars.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call