Abstract

The hematophagous common bed bug, Cimex lectularius, is not known to transmit human pathogens outside laboratory settings, having evolved various immune defense mechanisms including the expression of antimicrobial peptides (AMPs). We unveil three novel prolixicin AMPs in bed bugs, exhibiting strong homology to the prolixicin of kissing bugs, Rhodnius prolixus, and to diptericin/attacin AMPs. We demonstrate for the first time sex-specific and immune mode-specific upregulation of these prolixicins in immune organs, the midgut and rest of body, following injection and ingestion of Gr+ (Bacillus subtilis) and Gr– (Escherichia coli) bacteria. Synthetic CL-prolixicin2 significantly inhibited growth of E. coli strains and killed or impeded Trypanosoma cruzi, the Chagas disease agent. Our findings suggest that prolixicins are regulated by both IMD and Toll immune pathways, supporting cross-talk and blurred functional differentiation between major immune pathways. The efficacy of CL-prolixicin2 against T. cruzi underscores the potential of AMPs in Chagas disease management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.