Abstract

PurposePolymer-particle composites, which have demonstrated wide applications ranging from energy harvesting and storage, biomedical applications, electronics and environmental sensing to aerospace applications, have been investigated for decades. However, fabricating polymer-particle composites with controlled distribution of particles in polymer continues to be a fundamental challenge. As to date, a few additive manufacturing (AM) technologies can fabricate composites, however, with a limited choice of materials or limited dispersion control. Against this background, this research investigated a hybrid polymer-particle composite manufacturing process, projection electro-stereolithography (PES) process, which integrates electrostatic deposition and projection based stereolithography (SL) technologies.Design/methodology/approachIn PES process, a photoconductive film collects charged particles in the regions illuminated by light. Then, collected particles are transferred from the film to a polymer layer with defined patterns. Lastly, a digital mask is used to pattern the light irradiation of the digital micromirror device chip, selectively curing the photopolymer liquid resin and particles of that layer. By transferring particles from the photoconductive film to the photopolymer in a projection-based SL system, multi-material composites with locally controlled dispersions could be produced. A proof-of-concept PES testbed was developed. Various test cases have been performed to verify the feasibility and effectiveness of the developed approach.FindingsChallenges in this novel AM process, including process design, particle patterning and transferring, are addressed in this paper. It is found that particles can be transferred to a layer of partially cured resin completely and accurately, by using the stamping approach. The transferring rate is related to stamping force and degree of conversion of the recipient layer. The developed hybrid process can fabricate polymer-particle composites with arbitrary dispersion pattern, unlimited printable height and complicated geometries.Originality/valueAlthough an electrostatic deposition process has been investigated as a 3D printing technology for many years, it is the first attempt to integrate it with projection SL for fabricating multi-material polymer composite components. The novel hybrid process offers unique benefits including local dispersion control, arbitrary filling patterns, wide range of materials, unlimited printable height and arbitrary complicated geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.