Abstract

BackgroundWe have previously reported that progesterone (P4) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein.MethodsBy way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin.ResultsOur results show that P4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P4-binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P4-binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium.ConclusionProgesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the field of host-parasite co-evolution as well as the sex-associated susceptibility to this infection. In a more practical matter, present results may contribute to the molecular design of new drugs with anti-parasite actions.

Highlights

  • We have previously reported that progesterone (P4) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci

  • The aim of the present study was to explore the hypothesis that direct effects of P4 on T. solium cysticerci are mediated through a novel steroid-binding parasite protein resembling to PGRMC, by means of in vitro cell cultures, immunofluorescence, flow cytometry, twodimension electrophoresis (2D-E), protein sequencing, molecular modeling, docking analysis and phylogenetical computational analysis

  • In vitro effects of P4 on T. solium cysticerci As previously reported, we confirm previous results that, when T. solium cysticerci were in vitro exposed to P4, an increase in the scolex evagination was observed in all treated parasites as compared to control groups, where only 40% of them spontaneously evaginated (Fig. 1)

Read more

Summary

Introduction

We have previously reported that progesterone (P4) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Human neurocysticercosis and porcine cysticercosis are caused by the metacestode stage of the cestode parasite Taenia solium. Neurocysticercosis is still a serious human health problem, whereas porcine cysticercosisis is a veterinary problem in many developing countries and mainly in underdeveloped countries. One of the most important aspects during T. solium infection is the evagination process of T. solium cysticerci that takes place in the human gut. Infective eggs released with human stools can contaminate the environment and infect pigs, where the eggs rapidly differentiate into cysticerci. Cysticerci are mainly located in the skeletal muscles in pigs or brain tissue in humans, where the most severe symptoms are observed in patients with neurocysticercosis [3, 7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call