Abstract
In this paper, a novel process for organic acids and nutrient recovery from municipal sludge was introduced and evaluated based on laboratory-scale studies. An economical estimation for its practical application was also performed by mass balance in a full-scale plant (Q=158,000 m3 d(-1)). This novel process comprises an upflow sludge blanket-type high performance elutriated acid fermenter (5d of SRT) for organic acids recovery followed by an upflow-type crystallisation (3 h of HRT) reactor using waste lime for nutrient recovery. In the system, the fermenter is characterised by thermophilic (55 degrees C) and alkaline conditions (pH 9), contributing to higher hydrolysis/acidogenesis (0.18 g VFA(COD) g(-1) VSS(COD), 63.3% of VFA(COD)/COD produced, based on sludge characteristics of the rainy season) and pathogen-free stabilised sludge production. It also provides the optimal condition for the following crystallisation reactor. In the process, the waste lime, which is an industrial waste, can be used for pH control and cation (Ca and Mg) sources for crystallisation reaction. A cost estimation for full-scale application demonstrates that this process has economic benefits (about 67 dollars per m3 of wastewater except for the energy expense) even in the rainy season.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.