Abstract
Recently, deep learning using Convolutional Neural Networks has played an essential role in many fields. Traditional cryptography, such as the technologies of the garbled circuit and the homomorphic encryption, may provide both parties with a private and secure computation in the neural networks as well as a secure inference scheme. However, it suffers heavy computation in practical designs especially for the training of a CNN model. Hence, the scalability of the model is restricted by these components. In this paper, we propose a novel deep learning model and a secure inferencing scheme in an application of a neural network. We utilize the inherent properties of a convolutional neural network to design a secure mechanism without using any complicated cryptography component. The security analysis shows our proposed scheme is secure, and the experimental results demonstrate that our method is very efficient and suitable for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.