Abstract

For islet transplantation, pancreas preservation in University of Wisconsin (UW) solution is associated with disadvantages, such as collagenase inhibition, resulting in poor islet yield and islets with poor viability. In this study, we evaluated a novel preservation solution, the extracellular-type c-Jun N-terminal kinase (JNK) inhibitor-containing (EJ) solution. The EJ solution has high sodium-low potassium composition with low viscosity compared to UW solution. Moreover, EJ solution contains a recently developed JNK inhibitor from our laboratory. We first compared the performance of EJ solution with that of UW solution. Islet yield before and after purification was significantly higher in the EJ group than in the UW group. Second, we compared the performance of EJ solution with that of EJ solution without the JNK inhibitor (EJ-J solution). After pancreas preservation in EJ solution, JNK activity was maintained at a relatively low level during islet isolation. Islet yield before and after purification was significantly higher in the EJ group than in the EJ-J group. After islet transplantation into streptozotocin-induced diabetic mice, blood glucose levels reached the normoglycemic range in 61.5% and 7.7% of diabetic mice in the EJ and EJ-J groups, respectively. Moreover, EJ solution exhibited reduced inhibition of collagenase digestion compared with UW solution. Advantages of EJ solution over UW solution were inhibition of JNK activity and reduced collagenase inhibition. EJ solution may therefore be more suitable for islet isolation than UW solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.