Abstract

A predictive direct torque controller (PDTC) for induction motors (IM) is proposed. It combines the direct torque control (DTC) and the predictive control (PC), and uses a predictive switching table to enhance the overall performance of the motor. A new type of PC is adopted for speed regulation with the use of a load torque observer, the torque being considered an unknown perturbation. A Kalman filter (KF) is used for reliable flux estimation. The validity of the proposed controller was experimentally confirmed on a rapid control prototyping station. The obtained results have proven superiority of the proposed control with respect to the speed trajectory tracking, torque and flux dynamic responses, and disturbance rejection. Also, a lower current distortion was observed with PDTC, in comparison with the regular DTC, due to increased mean inverter switching frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call