Abstract

It is significant to accurately evaluate the relative permeability of oil–water two phase for multiphase seepage in porous media in low permeability and tight oil reservoir. However, stress sensitivity is an important characteristic for low permeability and tight oil reservoir. It is an effective way for fractal theory to describe the complexity and heterogeneity of the microstructure of porous media. To describe the relative permeability of oil–water two phase in porous media with complex and irregularity pores, a new relative permeability model oil–water two phases is proposed by the fractal theory and the stress sensitivity is taken into the established model in this paper. Meanwhile, the effects of effective stress, elastic modulus, porosity, maximum and minimum flow radius on oil–water relative permeability are analyzed. The new model is verified by comparing with the laboratory data and the results demonstrate that irreducible water and residual oil saturation have a negative correlation with effective stress. The relative permeability of the oil–water two-phase will shrink to the middle as the rise of effective stress, and the region of co-infiltration will decrease. The deformation quantity of porous media, irreducible water and residual oil saturation will increase as the elastic modulus decreases. The larger the maximum flow radius is, the lower the irreducible water saturation and residual oil saturation is. Both the porosity and the minimum flow radius have slight influences on the relative permeability of oil–water two-phase. The proposed relative permeability model can effectively predict the relative permeability of oil and water and help to describe and reveal the multiphase flow in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.