Abstract

Cooperative communication technology is of great importance for increasing the user reachable rate, further improving throughput and reducing the outage probability of non-orthogonal multiple access (NOMA) systems. This paper mainly studies the power allocation optimization method based on amplify-and-forward (AF) pattern division multiple access (PDMA) to obtain the maximum achievable throughput. We formulate an optimization problem of user power allocation in a downlink PDMA system with cooperative relaying, the exact expressions of system throughput and user outage probability of the AF-PDMA system are derived, and a novel power allocation optimization method based on uniform distribution and restricted constraints is proposed. The effectiveness of the restricted constraints and optimization method is verified by theoretical analysis and simulation. The studies we have performed showed that the proposed scheme with uniform distribution and restricted constraints can be significantly improved in terms of the system throughput in comparison to the case with a genetic algorithm (GA) and fixed power allocation scheme. Concerning the proposed method, the search space is reduced to 1/3 of the original feasible region, and the runtime of the algorithm accounts for only 20% of the GA runtime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call