Abstract

In order to obtain nontoxic functional polymer gels for biomedical applications, chemically crosslinked poly(aspartic acid) gels have been prepared using 1,4-diaminobutane as crosslinker. The presence of COOH and amino groups on the network chains renders these gels pH sensitive. Due to the specific hydrophobic–hydrophilic balance, these gels show a significant volume transition at a well-defined pH close to the p K value of uncrosslinked poly(aspartic acid). Since the magnitude of volume change critically depends on the degree of crosslinking, it is an important task to determine the topological characteristics of these networks. A novel method based on potentiometric acid–base titration has been developed to assess the crosslinking ratio, excluding physical crosslinks and entanglements. It turned out that only 25% of all crosslinker molecules forms real crosslinks between the poly(aspartic acid) chains; the rest react with one of its functional groups and forms short pendant side chains. At a nominal crosslinking ratio of 0.1, the number average molecular mass between crosslinks is found to be M c = 2300.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.