Abstract

A novel scaffold with large dimension of 3-4 cm in length and 1-1.5 cm in diameter was designed and fabricated for engineering large bone tissue in vivo. The scaffold was constructed by filling hydroxyapatite (HA) spherules into a porous HA tube. The HA spherules were prepared by chitin sol emulsification in oil and gelation in situ, and their sizes can be controlled by parameters such as stirring rate and oil temperature. Accumulation of the HA spherules formed the interconnected pores in the scaffold, and the porosity and microstructure of the scaffold can be controlled by varying the size and miroporous structure of the HA spherules. Porous HA tube coated with a thin layer of poly(L-lactic acid) (PLA) held the HA spherules together and provided the initial strength of scaffolds. HA spherules can be easily compounded with biological substance, such as comminuted bone granules, before being filled into the HA tubes. A pilot study is underway to use the hybrid scaffolds at different sites such as muscle, peritoneum, and bone side.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.