Abstract
In this paper, a novel population robustness-based switching response framework (PR-SRF) is proposed to develop effective dynamic multi-objective optimization algorithm (DMOA), which integrates different response strategies to comprehensively cope with the dynamic behaviors. In particular, the population robustness is described by the quantification of how severely the environmental changes affect current population, which is timely graded as three levels of weak, strong, and normal to enable the adaptive switch of three different responses of diversity-enhancement, diversity-maintenance, and the knowledge-transfer, respectively. In this way, associations between the adopted responses and the changing environments are successfully established, thereby facilitating more intelligent decision when handling the dynamic behaviors. According to the benchmark evaluation results, the proposed PR-SRF-DMOA yields better comprehensive performance than several other DMOAs with popular response strategies, and it also outperforms another three DMOAs with hybrid responses, which demonstrates the great competitiveness of our algorithm. In addition, ablation study proves that the proposed PR-SRF can sufficiently exploit the merits of different responses, which effectively alleviates the negative knowledge transfer in extremely fluctuating environments, thereby providing valuable references for the development of evolutionary transfer optimization (ETO) algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.