Abstract
Population initialization is a crucial task in evolutionary algorithms because it can affect the convergence speed and also the quality of the final solution. If no information about the solution is available, then random initialization is the most commonly used method to generate candidate solutions (initial population). This paper proposes a novel initialization approach which employs opposition-based learning to generate initial population. The conducted experiments over a comprehensive set of benchmark functions demonstrate that replacing the random initialization with the opposition-based population initialization can accelerate convergence speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.